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Abstract

Forest responses to climate change will depend on demographic impacts in the context of competition. Current

models used to predict species responses, termed climate envelope models (CEMs), are controversial, because (i)

calibration and prediction are based on correlations in space (CIS) between species abundance and climate, rather

than responses to climate change over time (COT), and (ii) they omit competition. To determine the relative

importance of COT, CIS, and competition for light, we applied a longitudinal analysis of 27 000 individual trees over

6–18 years subjected to experimental and natural variation in risk factors. Sensitivities and climate and resource

tracking identify which species are vulnerable to these risk factors and in what ways. Results show that responses to

COT differ from those predicted based on CIS. The most important impact is the effect of spring temperature on

fecundity, rather than any input variable on growth or survival. Of secondary importance is growing season moisture.

Species in the genera Pinus, Ulmus, Magnolia, and Fagus are particularly vulnerable to climate variation. However, the

effect of competition on growth and mortality risk exceeds the effects of climate variation in space or time for most

species. Because sensitivities to COT and competition are larger than CIS, current models miss the most important

effects. By directly comparing sensitivity to climate in time and space, together with competition, the approach

identifies which species are sensitive to climate change and why, including the heretofore overlooked impact on

fecundity.
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Introduction

Efforts to anticipate biodiversity loss lead to debate on

which species (or how many) are vulnerable to climate

change and whether or not species interactions affect

responses to climate (Pearson & Dawson, 2003; Ibáñez

et al., 2006; Araújo & Luoto, 2007; Beale et al., 2008;

Merrill et al., 2008; Duncan et al., 2009; Mohan et al.,

2009). Many modeling studies predict large species

losses (Erasmus et al., 2002; Thomas et al., 2004; Jetz

et al., 2007). Some experts argue that responses will

depend on competition, while others maintain that

geographic ranges are not influenced by species inter-

actions (Ibáñez et al., 2006; Araújo & Luoto, 2007; Suttle

et al., 2007; Beale et al., 2008; Merrill et al., 2008; Duncan

et al., 2009). One important but often overlooked con-

cern relates to the fact that many models rely on spatial

correlations between climate variables and species

abundance as a basis for predicting vulnerability to

changes over time. This approach can suffer from the

combined problems that (i) abundance is a poor indi-

cator of climate risk, and (ii) climate correlations in

space (CIS) do not necessarily reflect vulnerability to

climate changes over time (COT). High population

density can indeed indicate healthy conditions for a

species, but low density or absence may not result from

unhealthy conditions. Population abundance is con-

trolled by many factors, and spatial patterns in abun-

dance provide limited insight regarding vulnerability to

any one (Streng et al., 1989; Elliott & Baker, 2004; Ibáñez

et al., 2006; Yang et al., 2006; Canham & Thomas, 2010).

CIS are further complicated by the fact that current

abundance may depend on legacies of historical climate

variation and disturbance (Foster & Boose, 1992; Clark,

1996; Barber et al., 2000; Lloyd & Fastie, 2000; Bellemare

et al., 2002; Bush et al., 2008). Credible assessment of

climate vulnerability requires quantifying the contribu-

tions of changes in climate over time from those that

result in spatial correlation. Moreover, climate vulner-

ability is substantial only if impacts from climate ap-

proach those already faced by individuals on a day-to-

day basis, most notably competition with neighbors. If
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climate variables, competition, and site variables that

are unmeasured interact, then a climate relationship

that holds at one location cannot necessarily be extra-

polated to others.

For a southeastern US example, when temperatures

increase Piedmont clay soils may not support the long-

leaf pine forests that now dominate the coastal plain,

despite the fact that longleaf pine’s calibrated climate

envelope moves on to the Piedmont (Prasad et al., 2007)

If the distribution of longleaf pine is constrained to the

northwest by factors that are correlated with soil type

(e.g., disturbance and performance of competitors) and

to the east and south by water bodies, the climate

calibration is actually a surrogate for other variables.

Including other niche variables in the model cannot

remedy the problem if species abundance is not actually

limited by climate in the calibration set.

In this study, we move beyond spatial correlations of

climate and species abundance to show how vulner-

ability to climate COT can be directly evaluated from

demography, which, unlike species abundance, is clo-

sely linked to individual and population health. We

present a new approach that evaluates multiple demo-

graphic responses to both climate and competition for

dominant tree species in forests of the southeastern

United States. A number of studies have quantified

growth (McKenzie et al., 2001; Lloyd & Fastie, 2002;

Bunn et al., 2005) or mortality (van Mantgem & Ste-

phensen, 2007) correlations with past climate COT.

Our extensive data archive of tree census data differs

from previous census studies in providing annual

(rather than approximately 5 years) resolution. It dif-

fers from previous historical studies by including

simultaneous inference on multiple demographic

states (growth, maturation, fecundity, dispersal, sur-

vival). Rather than extrapolate from spatial correla-

tions or simulate change using parameters from the

literature, we evaluate responses to risk factors on the

basis of longitudinal studies of individuals that vary in

their exposures to potential risk factors, individually

and over time. We argue that use of spatial correlation

to determine ‘the equilibrium vegetation’ for a hy-

pothetical future climate (e.g., 2�CO2 boundary con-

ditions in a GCM) is only a first step. The capacity to

observe the impact of changing exposure to the actual

risk factors, individually and in combination, ad-

dresses the scale at which the process actually occurs

– the individual scale. When considering species loss,

climate change is a risk factor that interacts with

multiple aspects of individual health, including plant

physiology and function (Breda et al., 2006), vulner-

ability to natural enemy attack (McDowell et al., 2008),

competition for limited resources (Archaux & Wolters,

2006).

To evaluate the importance of climate relative to

competition, our approach involves sensitivity coeffi-

cients that are comparable across response variables

(demographic rates), input variables (climate and com-

petition for light), and species, and we introduce con-

cepts of ‘climate tracking’ and ‘resource tracking’.

Sensitivity coefficients quantify the size of the effect of

climate and competition on growth, fecundity, and sur-

vival. They are specific to each explanatory-variable : re-

sponse-variable pair and comparable across species.

Climate tracking and resource tracking are synthetic

representations of tree responses that quantify how the

combination of demographic rates track explanatory

variables. Together, they allow us to identify demo-

graphic responses that are tracking climate relative to

the resources for which trees compete. Our perspective

departs from previous approaches by addressing the

limitations of spatial correlations in abundance and the

need to incorporate competition. It allows us to evaluate

hypotheses derived from recent meta-analysis that (i)

deciduous trees response to temperature exceeds that of

evergreens, and (ii) that developmental trajectories could

be altered by temperature change, affecting resource

allocation (Way & Oren, 2010).

The long-term longitudinal study follows individuals

subjected to natural variation in climate in time and

space, together with natural and experimental variation

in light availability, an important resource for which

trees compete (Dietze & Clark, 2008; Ibáñez et al., 2008).

Valuable insights have come from previous long-term

demographic monitoring (e.g., Goldberg & Turner,

1986; Condit et al., 2006; Angerta et al., 2009). We build

from this approach with a design that allows quantifi-

cation of both temporal and spatial variation in climate

at local and regional scales in the context of experi-

mental manipulations of competition. Response vari-

ables are multivariate demographic rates, including

growth, fecundity, and survival, estimated for each of

4280 000 tree-years in a study that spans 6–18 years in 11

forest stands in three regions in the southeastern United

States, including 40 species and 427 000 trees (Support-

ing Information). A hierarchical Bayes analysis was used

to quantify the contributions of competition and climate

change over time (COT) synthetically with climate CIS

(Clark, 2010; Clark et al., 2010b).

Materials and methods

The challenge we address is illustrated by Fig. 1. Large

variation in demographic rates (Fig. 1c) results from the fact

that individual responses depend not only on spatial variation

in hydrology and temperature, but also on moisture and

temperature COT (Fig. 1a and b) along with the local compe-

titive environment. Analysis of COT is particularly relevant,
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because it concerns the year-to-decade scale responses ob-

served at each location, the responses of interest for green-

house warming. CIS is also important, but it does not directly

relate to how a species responds to COT. For example, high

mortality during drought years results because it is unusually

dry, not because it is dry on average. Individuals at the highest

Fig. 1 Climate variation between sites and over time (a, b) is calibrated against demographic variation, such as growth rates of trees (c).

Raw data for each of 11 stands (Table 1) in three regions for spring temperature (above) and summer Palmer Drought Severity (PDSI,

below). Ts for site s is the mean value for each time series in the upper graph. Ts,t is deviation from this mean value for year t. In (c) are

growth rates for four species Pinus, including P. rigida (black), P. strobus (red), P. taeda (blue), and P. echinata (turquoise).
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risk from climate COT are least likely to be observed in spatial

studies, because they are most rapidly culled. The effect of

climate variation further depends on an individual’s compe-

titive environment (McLaughlin et al., 1987; Pacala & Hurtt

1993; Prentice et al., 1993; Loehle & LeBlanc 1996; Uriarte et al.,

2005; Canham et al., 2006). Our hierarchical Bayes framework

quantifies how species interactions mediate climate response

while allowing for the variation associated with observations,

parameters, over years, between stands, and between indivi-

duals, including light available to each tree due to shading by

neighbors (Clark, 2010).

Light is the most universal limiting resource for which trees

compete in temperate environments (Silvertown, 2004). In this

study variation in light availability for each tree i at stand

location s in each year t, Cis,t, comes both from natural changes

in the canopies of competing trees and from large-scale canopy

manipulations, implemented in an intervention design where

individuals have pre- and post-treatment growth responses

(Dietze & Clark, 2008; Clark et al., 2010b). Cis,t is the exposed

canopy area (ECA–m2), the fraction of the canopy exposed to

direct sunlight (Wyckoff & Clark 2005).

The analysis makes use of the fact that demographic rates

reflect individual and population health. Both tree growth

rates and fecundities reflect nutritional status; in fact growth

rate is often used as a predictor of mortality risk (Kobe et al.,

1995; van Mantgem et al., 2003; Wyckoff & Clark, 2005; Clark

et al., 2007). Demographic rates further affect population

success by way of competition—rapid growth enhances light

capture, a limiting resource, and high fecundity increases

capture of regeneration sites. This study analyzes demo-

graphic rates (growth, fecundity, survival) synthetically, as

part of a single analysis (Clark et al., 2010b).

Finally, if competition and COT have a large effect on

demographic rates, then responses to climate change will

differ from predictions of climate envelope models (CEMs).

To determine the extent to which different approaches might

agree or not, we compared results from this analysis with

predictions from CEMs for the same regions. The goal of

hypothesis testing is not to determine which model is ‘correct’.

Rather, cases where demographic rates show vulnerability and

CEMs predict change support one another in the same way

that clinical trials and spatial epidemiology could reveal

complementary evidence for disease risk. Where demographic

rates show vulnerability, and other models suggest no change,

there is essentially ‘disagreement’, suggesting need for tar-

geted research. In the next section we summarize the analysis.

Demographic data

We make use of the large longitudinal data set from

sites detailed in Clark et al. (2010b). Individual trees are

tracked through time at 11 sites differing in their local

climate settings (Table 1). Sample sizes are provided for

all field observations in the Supporting Information.

Diameter measurements of trees and ring-widths on

increment cores provide primary evidence for tree

growth rates. Seed traps and observations of tree ma-

turation status are the basis for fecundity estimates, the

number of seeds produced by tree i in year t. Survival

status informs mortality risk. Canopy status observa-

tions from the ground and remotely sensed exposed

canopy area are the basis for light estimates. The

synthetic model includes data models for each of the

types of observations, detailed in Clark et al. (2010b).

Climate variables

We focus on two aspects of climate (i) spring tempera-

tures T, which determine growing season length and

Table 1 Site characteristics and summary climate variables

Vegetation

Site

name*

Elevation

(m)

Slope

(%)

Ann

Prec (mm)

T0s
( 1C)w

Range T0s,t

( 1C)z
Range PDSI

(dimensionless)

Pitch pine/oak C1 780 80 194 6.26 3.10 4.73

Cove hardwood C2 820 40 194 5.20 3.17 4.70

Mixed oak/hardwood C3 870 50 194 5.28 3.17 4.76

Mixed oak/hardwood C4 1110 55 200 4.10 2.90 5.38

Northern hardwood C5 1410 60 270 2.29 3.67 5.36

Cove hardwood CL 1030 35 200 5.86 2.97 5.31

Mixed oak CU 1140 35 245 4.25 3.02 5.47

Mixed pine/oak DB 170 25 121 7.05 3.13 10.30

Bottomland hardwood DH 165 4 121 6.89 2.99 10.30

Mixed hardwood MF 720 25 102 4.73 3.30 8.96

Mixed hardwood MP 730 35 102 5.01 3.27 8.96

Range 1240 76 168 4.76 – –

*Stand names indicate C, southern North Carolina Appalachian sites at Coweeta Hydrologic Lab (351030N, 831270W); M, northern

North Carolina Appalachian sites at Mars Hill (35149N, 82132W); and D, North Carolina Piedmont at Duke Forest (351580N, 79150W).
wAverage spring temperature at site s.
zRange of spring temperatures at s during the study.

F O R E S T S , C L I M A T E C H A N G E , A N D C O M P E T I T I O N 1837

r 2011 Blackwell Publishing Ltd, Global Change Biology, 17, 1834–1849



span the time of late winter frost events and bud, flower,

and fruit set (Houle, 1999; Masaki et al., 2008; Kon &

Noda, 2007) and (ii) summer drought P, which can

impact carbon gain for the subsequent year’s growth

and reproduction, and it can directly precipitate mortal-

ity (Oberhuber et al., 1986; Engelbrecht et al., 2005;

Wright, 2005; Breda et al., 2006; Nepstad et al., 2007;

McDowell et al., 2008; Phillips et al., 2009). The temporal

dimensions (COT) are, for temperature, Ts,t, the variation

in mean January to March temperatures and, for summer

drought, Ps,t, the mean July to August Palmer Drought

Severity Index (PDSI), both at s 5 1, . . ., 11 sites in

t 5 1, . . ., 18 years (Fig. 1). Mean values are taken over

the last 20 years. The mean values are insensitive to the

precise duration. The PDSI represents a departure from

mean conditions, calculated here on the basis of the last

70 years. From temperature data we calculate the site

average temperature T0s, and express COT for tempera-

ture Ts,t as departures from the mean for site s. PDSI uses

temperature and precipitation data to evaluate soil

moisture levels, as departures from the long-term aver-

age for a site. Moderate droughts have values of �2, and

extreme drought, such as experienced from 2000 to 2002

and from 2006 to 2008 in the Southeastern US, have

values near �4 (Fig. 1b). Thus, both variables are ex-

pressed as departures from the average at each site s and

isolate variation over time t.

The spatial dimensions (CIS) are the stand-s mean

spring temperature T0s and hydrologic index P0s, re-

spectively. The latter combines the mean annual pre-

cipitation and position-on-slope at s relative to all sites

included in the analysis

p0s ¼
p0s
p0
=

zs

z0
;

where p0s is the mean precipitation and zs is the position

on slope at s, and (p0, z0) are the means taken over all

sites, respectively. Locations with high precipitation

and situated at topographic lows have high values of

P0s, and vice versa. There is a large range of both

precipitation and position-on-slope across sites (Table

1, Supporting Information). Values for Ts,t and Ps,t vary

among sites and years, but average zero within each

site; values for T0s and P0s vary only between sites and

not over time.

We determined relative contributions of explanatory

variables (tree-scale light availability Cis,t, plot-scale

temporal variation in spring temperature Ts,t and

drought Ps,t (COT), and stand-scale spatial variation in

temperature T0s and hydrologic conditions P0s (CIS)) to

each of the demographic variables and to their com-

bined response. Estimates come from an integration of

data from ground observations and remote sensing

(Table 1) (Clark et al., 2007, 2010b).

Demographic inference

The model assimilates demographic observations to

infer variation in diameter growth (cm yr�1), fecundity

(seeds yr�1), and mortality risk (annual probability) for

tree i at site s and year t. All parameters and latent states

are estimated together (Clark et al., 2010b). There is a

nonlinear, multivariate state-space model for each in-

dividual, responding to its changing diameter, lagged

growth rate [an AR(1) term], light availability, climate,

random-individual effects, and model error. There is

observation error associated with each type of observa-

tion. The multivariate state space model includes fe-

cundity fis,t (seeds per tree) and the diameter growth

increment dis,t (cm) which determines change in

diameter

Dis;tþ1 ¼ Dis;t þ dis;t;

where Dis,t is the diameter of individual i at location s in

year t. The model relationship between diameter

growth increment, fecundity, and covariates is

yis;t ¼ xis;t�1Aþ bis þ bt þ eis;t; ð1Þ

bis � N2ð0;VÞ

eis;t � N2ð0;SÞ:

The index for R 5 2 response variables is r 5 1, 2,

growth and fecundity, which are contained in the row

vector yis,t 5 [ln dis,t ln fis,t]
T. The first term on the right-

hand side of Eqn (1) contains q 5 1, . . ., Q covariates. In

addition to diameter and an AR(1) term covariates in

the 1�Q vector are

xis;t�1 ¼ ½1; ln Dis;t�1; ln
2 Dis;t�1; ln dis;t�1;

ln Cis;t�1;Ts;t�1;Ps;t�1;T
0
s;P
0
s�:

ð2Þ

With the exception of the last four climate-related

variables, all are detailed in Clark et al. (2010b). The

Q�R parameter matrix A contains coefficients describ-

ing how each predictor affects proportionate change in

fecundity and growth in response vector yis,t. Note that

predictor in year t�1 affect demographic rates in year t.

The elements of matrix A, Aqr, describe how the qth

covariate influences the rth response (r 5 1 for ln dia-

meter growth, r 5 2 for ln fecundity). Together the

model accounts for the fact that growth and fecundity

tend to increase with tree size, but may eventually

decline, fecundity can vary from year-to-year for rea-

sons that are not tightly coupled with climate (e.g.,

masting) bt, individuals differ in their growth and

fecundity bis for reasons not taken up by covariates in
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xis,t�1, and, thus, are treated as random effects. In other

words, shared interannual variation that is not linked to

climate appears in year effects. There is error in the

process model eis,t having covariance matrix

S ¼
P

11

P
12P

12

P
22

� �
:

The submodel for mortality risk exploits the fact that

diameter growth rate dis,t provides an indication of

overall vigor and a predictor of death (Kobe et al.,

1995; Metcalf et al., 2009; Clark et al., 2010b). The

parameter md is the probability of mortality associated

with the tree’s growth rate dis,t�1 in the previous year

t�1. We combine this growth rate effect with potential

additional influence of senescence, or physiological

decline that could come with increasing diameter mD,

where Dis,t�1 is the previous year’s diameter. The com-

bined mortality probability is

mis;t ¼ md þ mD�md; mD: ð3Þ

Modeling rationale, model structure, algorithm de-

velopment, and diagnostics are detailed in Clark et al.

(2010a, b). Computation is Metropolis-within-Gibbs, a

Markov Chain Monte Carlo (MCMC) technique. Exten-

sive sensitivity analysis and testing with in- and out-of-

sample prediction as applied here is the most effective

basis for model evaluation (e.g., Clark et al., 2010a).

Climate and resource tracking

Two derived quantities are used to synthesize how

climate and competition variables affect responses,

summarized in Table 2. The total effect of a variable q

in the vector xis,t�1 on the multivariate response vector

yis,t can be summarized by how well the model predicts

that variable xis,t�1(q). This ‘tracking’ of a variable q

differs from standard indices (e.g., parameters Aqr or

sensitivity coefficients discussed below), which describe

only the effect of q on a single response variable. The

tracking coefficients are synthetic and come from the

model, to determine how well the model predicts an

explanatory variable. Inversion of Eqn (1) involves

algebra and some general distribution theory, yielding

xis;tðqÞ � N x̂is;tðqÞ;Q
T
q SQq

� �
; ð4Þ

where the predictive mean is

x̂is;tðqÞ ¼ yis;tþ1 � xis;tð�qÞAð�qÞbis � bt

� �
Qq;

Qq ¼ AT
q AqAT

q

� ��1
;

Aq is the qth row of A, A(�q) is A lacking row q, and

xis,t(�q) is the covariate vector lacking covariate q. This is

the prediction of an input variable q for a specific tree

year. There is a prediction for each individual and each

year. We predict tracking coefficients for each indivi-

dual and year from the integral

p xis;tðqÞjy; x
� �

¼
Z

N xis;tðgÞjx̂is;tðgÞ;Q
T
q SQq

� �
p yjy; xð Þdy;

where y is the posterior distribution for all parameters

estimated in the model, and (y, x) is the set of all

observations. The integral is evaluated numerically

from MCMC output.

An index of climate tracking that takes account of

both predictive mean and variance derives from model

selection techniques, here used to determine how well

the model predicts the explanatory rather than response

variables. Predictive loss is a model selection criterion

that rewards goodness of fit and small predictive var-

iance (Gelfand & Ghosh, 1998). By direct analogy with

predictive loss, we can combine goodness of fit and

small predictive variance with the deviance criterion

Dq ¼ Gq þ Pq; ð5Þ

where the first term is goodness of fit is given by

Gq ¼
1

n

X
i;s

X
t

X
q

xis;tðqÞ � x̂is;tðqÞ
� �2

for a total of n observations, and the second-term

constitutes the predictive variance

pq ¼ QT
q SQq:

Close tracking of a covariate results in small Gq, small

Pq, and thus, small Dq.

Table 2 Variable and parameter summary

Inputs xis,t Responses yis,t Parameters Derived parameters

Spring temperature, spatial Ts Diameter growth ln dis,t A,S dyr

dx0q
Moisture, spatial Ps

Spring temperature, temporal Ts,t Fecundity ln fis,t

Moisture, temporal (summer PDSI) Ps,t

Light competition, spatio-temporal (exposed canopy area) Cis,t mis,t md,mD x0q
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Sensitivity analysis

Because growth, fecundity, and predictor variables have

different dimensions and scales we place them on a

common scale of proportionate responses to a dimen-

sionless predictor variable

x0q ¼
xq � x

ðminÞ
q

x
ðmaxÞ
q � x

ðminÞ
q

i.e., standardized for the range of variation for the

species x
ðmaxÞ
q � x

ðminÞ
q

� �
. The sensitivity index of re-

sponse r (diameter growth or log fecundity) to covariate

x0q is

dyr

dx0q
¼ dyr

dxq

dxq

dx0q
¼

Aqr � Srr0S�1
r0r0Aqr0

x
ðmaxÞ
q � x

ðminÞ
q

; ð6Þ

i.e., element (q, r) of parameter matrix A, modified by

the contribution from the covariance between response

r and the other response r0 and standardized for the

range of the predictor. Mortality risk is on a common

(probability) scale for all species, so we evaluate sensi-

tivities on this scale, again, standardized for predictor

variables,

@m
@x0q
¼ ð1� mDÞ

@m
@ ln dis;t�1

� @ ln dis;t�1

@xq
�
@xq

@x0q
; ð7Þ

¼ @m
@ ln dis;t�1

�
ð1� mDÞ Aq1 � S12S�1

22 Aq2

� �
x
ðmaxÞ
q � x

ðminÞ
q

:

The uncertainties in sensitivity estimates are repre-

sented by one standard deviation (boxes) and 95%

credible intervals (whiskers) in Figs 2 and 3. The model

uncertainty is contained in covariance matrix S. This

matrix describes error in the state-space model of

growth and fecundity over time [Eqn (1)]. The uncer-

tainty contributed by parameter estimates is character-

ized by the joint posterior for the model, which is

obtained by integrating over the posterior, described

in detail in Clark (2010). To include both types of

uncertainty we drew random parameter vectors from

the joint posterior and evaluated Eqns (6) and (7).

Distribution of data

Although rarely evaluated in calibration-prediction stu-

dies, the distribution of explanatory variables is critical

(Iverson et al., 2008). There must be adequate range to

insure that effects can be identified, and predictor vari-

ables cannot be redundant—correlations between them

cannot be excessively large. Both criteria are fulfilled

here. The range of temperature both within (3.0–3.7 1C)

and between (4.8 1C) stands (Supporting Information) is

relevant for scenarios of change under mid-21st Century

climate change (IPCC, 2007). Owing to droughts in the

1990s and the 2000s, summer PDSI varies widely within

sites, approaching the maximum range for PDSI (ap-

proximately �5 to 5, Fig. 1b). The hydrological index is

calculated from sites that range over 168 cm in annual

precipitation and from 4% to 80% slopes.

Correlations in predictor variables x affect the esti-

mates of parameters A. All correlations between pre-

dictor covariates are o0.2 in absolute value (Table 3),

which explains why posterior densities of A also show

low correlation (detailed in Clark et al., 2010b). Because

sensitivity coefficients are derived from A, they too

show low posterior correlation. There is AR(1) structure

in Eqn (4) to accommodate serial dependence in yt.

However, the predictions of tracking variables xt(q) are

only weakly dependent on design structure. From Eqn

(4) note that the effect of autocorrelation in xq, for any

lag k is zero

@x̂tðqÞ

@xt�kðqÞ
¼ 0:

Comparison with CEM

To determine the extent to which approaches differ in

their predictions for response to climate change, we

compared results from this analysis with predictions

from CEMs. Based on the USDA Forest Service’s Forest

Inventory and Analysis Program, CEM predictions

have been developed for two emissions scenarios and

three climate models: the Parallel Climate Model, the

Hadley CM3 model, and the Geophysical Fluid Dy-

namics Laboratory model (http://www.nrs.fs.fed.us/

atlas/tree/tree_atlas.html) (Iverson et al., 2008). We

compared the average changes for each species pre-

dicted by the three models with sensitivities deter-

mined in this study. We completed comparisons for

the two National Forests closest and most similar in

elevation to our study regions, one in the Piedmont

(Uwharrie National Forest) and another in the Appala-

chian Mountains (Nantahala National Forest). These

comparisons involve different assumptions and thus

are complementary in their implications.

Results

Incorporating competition with responses to variation

in both time and space (COT and CIS) leads to new

insights that differ from CEM predictions. Sensitivity

coefficients to spring temperature, summer PDSI, and

light competition can be directly compared, as shown

by the example for Pinus rigida in Fig. 2a. Spring
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temperature (orange) has the largest impact overall and

most strongly affects fecundity. It is followed by the

effect of summer drought (turquoise) on fecundity.

However, next in importance are effects of light compe-

tition (black) and spring temperatures on growth rate.

Lowest impacts come from light competition on fecund-

ity and summer drought on growth. Although growth

rate is the only variable typically analyzed in long-

itudinal studies of climate variation, this analysis shows

that it responds more to competition than to either

climate variable. The ability to directly compare effects

of different sources of variation across different demo-

graphic rates can be extended to all species (Fig. 3).

Sensitivities to competition and climate variables

span two orders of magnitude for growth and fecundity

and four orders of magnitude for mortality risk. Be-

cause warming is the most consistent change predicted

for the southeastern United States, species are ordered

in Fig. 3 from most to least sensitive to Ts,t. The first

obvious departure from previous studies is the demon-

stration that fecundity, not tree growth and mortality, is

the most responsive to climate change. Whereas only

Magnolia acuminata has growth sensitivity to tempera-

ture greater than 10% (Fig. 3a), many species have

sensitivities this large for fecundity (Fig. 3b). Spring

temperature variation has a much larger effect on

Fig. 2 Sensitivity coefficients for Pinus rigida (a) describe the proportionate response of a specific demographic rate to a specific

variable, such as spring temperature (orange), summer drought (green), or competition for light (black). Predictive distributions are

plotted over time for climate variables (dashed lines) together with the true values (solid lines) in (c) and (d). For light availability (b),

predictions are plotted against true values with a line of agreement (dashed). Predictive intervals (95%) are bounded by dashed lines in

(c) and (d) and by vertical lines in (b).
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Fig. 3 Sensitivity (mean, 1 and 2 standard deviations) for each of three demographic responses to light (Cis,t), spring temperature

variation over time (Ts,t), summer drought variation over time (Ps,t), spring temperature variation in space (T’s), and hydrological

variation in space (P’s). Species are ranked according to sensitivity to temperature variation in time Tij,t (orange). Also shown for each

species is the variable accounting for most of the variation together with Tij,t. Sensitivities are shown for (a) growth (Eqn 6), (b) fecundity

(eqn 6), and (c) survival (Eqn 7). In (a) and (b) the horizontal line is drawn at 10% for reference.
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fecundity than does any variable on growth. Thus, the

capacity to compete for regeneration sites locally and

migrate in response to climate change, which both

depend heavily on fecundity (Clark et al., 2001), repre-

sent one of the most critical consequences of climate

change. Examples of species highly sensitive for all

three demographic responses are in the genus Pinus

and Ulmus [Magnolia spp. are also sensitive in growth

(Fig. 3a) and survival (Fig. 3c), but fecundity is not

estimated due to inadequate data on seed production].

Competition accounts for most of the variation in

growth and mortality risk (black bars in Fig. 3a and

c), in all but a few cases exceeding that from tempera-

ture variation in time Tt or any other climate variable.

Although temperature variation in time is the dominant

control on fecundity for a large number of species (Fig.

3b), unlike growth, the secondary sensitivity often

includes temperature and moisture variation in time

and competition for light.

Results confirm the need to complement traditional

predictive modeling of climate CIS, which accounts for

little demographic variation, with longitudinal studies

of impacts of climate COT. In a minority of cases T0s or

P0s (based on CIS) emerge as the dominant source of

variation in demographic rates (Fig. 3). Coming from an

analysis that spans the climate space of southern mixed

pine and oak to northern hardwoods (Table 1), this lack

of importance suggests that spatial correlation in cli-

mate and abundance provides limited insight for re-

sponses over time.

Figure 4 shows demographic sensitivities from our

longitudinal analysis compared with predictions of

CEMs from nearby national forests. ‘Agreement’ be-

tween the two methods would mean that species hav-

ing low sensitivity (horizontal axis) are also predicted to

have small changes in abundance (vertical axis). For all

three demographic rates, many of the species showing

the highest sensitivity to spring temperature variation

and summer drought over time were predicted to have

the lowest predicted response to climate change in

CEMs (Fig. 4). The two approaches appear to ‘agree’

only that the fecundity response of Pinus taeda is large

(the highest bar in Fig. 4c). For growth and mortality

risk the responses contrast for all species except Pinus

taeda, for both spring temperature and summer

drought.

Given the large difference in sensitivity to COT vs.

CIS, it is not surprising that demographic sensitivities

contrast with predictions from CEMs (Fig. 4). To better

illustrate why the two methods should produce differ-

ent results we turn to synthetic estimates of climate

tracking and resource tracking (Materials and meth-

ods). The large variation in demographic rates of Fig.

1c is typical, because many factors contribute (Clark,

2010). If a species is sensitive to climate or resources, the

fitted model should ‘predict’ that variable, whether or

not there is evidence for its effects in a response variable

like Fig. 1c. For example, although growth rates of P.

rigida are not obviously related to summer PDSI or

spring temperature effects in Fig. 1c, the fitted model

predicts both variables with a high degree of precision

(Fig. 2c and d); P. rigida closely ‘tracks’ both spring

temperatures and summer drought. The relatively low

importance of competition for light (large predictive

intervals in Fig. 2b) comes from the fact that, in this

region, this species occurs on xeric ridgelines, where

crowns are relatively unaffected by competing trees.

Taken together, the sensitivity coefficients show the

effect size on a specific demographic variable (Fig. 2a),

whereas predictive distributions show the importance

of a variable for the synthetic response (Fig. 2b).

If demographic rates of a species are not tracking a

climate variable now, then data do not support the

interpretation that it will respond to near-term changes

in that variable in the future. In contrast to P. rigida,

Liriodendron tulipifera populations of the southern Ap-

palachians are not ‘tracking’ current climate, as demon-

strated by the wide predictive intervals in the middle

panels of Fig. 5. The inability to ‘predict’ climate varia-

tion indicates that these variables are not influencing

current growth and reproduction. Overall, Liriodendron

demography ‘tracks’ summer drought more closely

than it does spring temperature, but not with the

precision of P. rigida (Fig. 5). Liquidambar populations

on the Piedmont sites track summer drought, but not

spring temperature (Fig. 5).

Combining sensitivity and concepts of climate track-

ing allows identification of species at risk of climate

change. The predictive loss associated with tracking

highlights species of the genera Pinus, Ulmus, Magnolia,

and Fagus as sensitive to both spring temperature and

summer PDSI (Fig 6). These genera are sensitive in

terms of individual demographic rates (Fig. 3) and they

are tracking climate closely (Supporting Information).

In addition to these species, spring temperatures are

closely tracked by Tilia, and summer drought is closely

tracked by Cercis and Liquidambar.

Discussion

Demographic tracking studies complement CEMs by

determining the vulnerability of individual trees to

exposure to risk factors, including COT, CIS, and com-

petition. CEMs afford valuable insight (Thomas et al.,

2004; Iverson et al., 2008), showing how the abundance

of a species is correlated with spatial variation in

climate. The maps that are generated from regression

models give a sense of differences between species in
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how extreme climate impacts could become. Especially

careful studies by Iverson et al., (2008) combine climate

with other variables that correlate with abundance.

Despite their utility, CEMs can only provide limited

insight on vulnerability, for the same reasons that public

health scientists do not rely heavily on spatial correla-

tions to determine the types of individuals that are

vulnerable to risk factors. First, in any spatial analysis

of demography, the individuals at highest risk are least

likely to be observed. This biased representation of risk

affects inference – the individuals available for study

are those that are healthy in a given setting, and

estimates depend on the distribution of data (e.g.,

Lavine, 1991) lacking calibration for the risky environ-

Fig. 4 Comparisons of demographic sensitivities (mean, 1 and 2 standard deviations) from Fig. 3 with predicted change in importance

from climate envelop models (CEMs). The dashed line in (a) indicates a pattern expected if the two methods agreed. The six panels are

for all combinations of growth (a, b), fecundity (c, d), and survival (e, f) for spring temperature (a, c, e) and summer drought (b, d, f).
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ment. Spatial correlations between climate and abun-

dance miss the fact that low rainfall on average has

different effects than low rainfall as an extreme event –

for this reason PDSI is calculated as a departure from

the local mean climate. Moreover, CEMs do not resolve

the individual scale, i.e., the scale where competition

and climate interact. Finally, the response variable,

species abundance, is only weakly related to risk–

species rarity or absence does not necessarily mean that

the climate is unsuitable.

Results from these methods (Fig. 4) can contrast not

only because CEMs do not include competition, but also

because they use different dimensions for calibration

(space) and prediction (time), and the response variable

in CEMs (species abundance) is a weak diagnostic of

climate risk. Spatial correlations between species abun-

dance and climate depend on variables other than

climate, such as soils and hydrology (Breda et al.,

2006; Ibáñez et al., 2006; Iverson et al., 2008; McDowell

et al. 2008) and legacies of land use and exploitation

(Ellis & Ramankutt, 2008; Chazdon et al., 2009). Includ-

ing large numbers of niche variables in CEMs does

resolve the limitations of spatial correlation. The ranges

of many species are determined by water bodies, geo-

graphic variation in parent material, distributions of

other species with which they interact, political bound-

aries, and the sampling variation that attends all of

these factors. Regression coefficients from geographic

comparisons can have negligible connection to climate

effects at any given location, partly because species

abundance does not respond to annual to decadal scale

climate variation, unless large changes occur. Even in

cases where population frontiers may respond rapidly

to climate variation, such areas can represent the min-

ority of observations in many data sets and have little

impact on the estimates for regression models. Finally,

the fine spatial scales relevant for competition are not

resolved in CEMs. Increasing the spatial resolution of

CEMs finds habitats that are missed at coarse resolution

(Luoto & Heikkinen, 2008; Randin et al., 2009), but the

meter scale at which competition operates is not accom-

modated by the highest resolution CEMs. For many

species we find that the consequences of climate change

for growth and mortality are overwhelmed by competi-

tion (Fig. 3). On the other hand, climate emerges as a

dominant driver of reproductive effort.

The FIA database provides substantial spatial infor-

mation on species abundance, in the form of several

repeated samples from small plots spanning environ-

mental gradients. This valuable resource was imple-

mented to provide a periodic inventory of forest

resources. Individual stems have been measured from

one to three times at intervals of up to 5 years. Growth

and survival over an interval can be compared with

spatial variation in climate and environmental gradi-

ents and between size classes (Canham et al., 2006;

Iverson et al., 2008; Purves, 2009; Woodall et al., 2010).

An ordinal crown variable provides some indication of

competition for the census year (Lichstein et al., 2010).

Its demographic value is limited because individuals

are difficult to track between censuses, which are few

(typically two censuses), uneven in duration (several

years), and cannot be matched with interannual climate

variability. Few demographic variables are recorded on

Fig. 5 Examples of species closely tracking climate (Pinus

rigida above) and not (Liriodendron center). In the bottom panel

Liquidambar is closely tracking summer drought, but not spring

temperature. Colored lines are the climate variable, dashed lines

the 95% predictive intervals of it based on the fitted model. For

all three species, predictions are shown for spring temperature

(a) and summer drought (b).
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individuals (e.g., there is no information related to

fecundity). Longitudinal methods bring the advantages

of the full demographic response to climate and com-

petition at the scale of individual responses and inter-

annual climate variation, but lack the extensive

geographic coverage of FIA. Clearly, these different

methods complement one another.

Demographic approaches can complement studies of

past changes in distribution and abundance (Hodkin-

son, 2005; Beckage, 2008). By themselves, historical

changes are difficult to attribute. Species changes occur

for reasons that include atmospheric CO2, land use, and

a changing biotic environment – they typically cannot

be attributed to climate alone, but instead to a combina-

tion of factors. Studies of past growth bring additional

insight (Salzer et al., 2009; McMahon et al., 2010), but

represent only part of the demographic response, fe-

cundity being the most sensitive. By combining sensi-

tivity and climate tracking in an analysis that

synthesizes climate and competition effects on all de-

mographic rates we can sharpen the interpretation. We

can rank species in terms of their tracking of climate

Fig. 6 Predictive loss values for climate tracking (upper two panels) and resource tracking (lower panel), ordered by increasing values

of Dq (Eqn 5). Those with the lowest values most closely track climate variation over time and are most sensitive to change.
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and resources (Fig. 6) and identify how each demo-

graphic rate responds to each explanatory variable

individually (Fig. 3). Differences among species in the

extent to which they track climate change help to

explain differences from a CEM approach. Climate

tracking inverts the model to determine whether or

not a specific risk factor x is being tracked by the

synthetic (multivariate) response vector y. Ability to

predict x identifies it as a variable of importance for

the full response y. If a species is not tracking a climate

variable now, there is not yet any indication of actual

risk. Liriodendron and Acer rubrum are predicted to be

among the species most strongly affected by climate

change in the CEM analysis of these same species and

regions (Fig. 4), but they are not even tracking contem-

porary climate variation according to this analysis (Figs

5 and 6). Conversely Pinus rigida is closely tracking

contemporary climate, yet is predicted to experience

no change in CEM models.

Our results did not support the hypothesis that

responses follow simple functional-type classes. We

did not find that deciduous species were more respon-

sive to temperature than evergreens (Way & Oren,

2010), with both groups being represented in the most

and least sensitive extremes (Fig. 3a). However, the

hypothesis that temperature can change developmental

trajectories is consistent with our finding that fecundity

responded disproportionately to temperature (Fig. 3b).

More comparisons with the detailed studies synthe-

sized by Way & Oren, (2010) hold promise for linking

multiyear longitudinal responses back to physiological

responses to temperature and moisture.

Conclusions

By quantifying the direct effect of climate variation on

demographic rates over time (COT), as well as spatial

correlations in abundance (CIS), we estimate sensitivity

to climate change, the most relevant issue for future

biodiversity. This longitudinal demographic analysis of

individual responses to climate, in the form of growth,

fecundity, and survival complements the interpretation

that has come from CEMs and historical analysis of

species abundance. Although the problems of dimen-

sion, scale, and attribution have long been recognized

as potential sources of confusion (Pearson & Dawson,

2003; Ibáñez et al., 2006; Araújo & Luoto, 2007; Beale

et al., 2008; Merrill et al., 2008; Duncan et al., 2009), this

analysis confirms that climate COT could differ sub-

stantially from predictions based on spatial climate

correlations. Unlike previous studies of forests that

have focused almost entirely on growth and survival,

we find that the most dramatic changes in time are

expected from fecundity responses to both spring

warming and summer drought. For fecundity, climate

variation in time represents a stronger control for most

species than does competition. Because fecundity af-

fects not only capacity to compete for new sites but also

migration, this result has significance both locally and

regionally. When dispersal includes rare long-distance

dispersal events, as is common for trees, small increases

in fecundity translate to large changes in migration

potential (Clark et al., 2001) that interact with land cover

transformation. Thus, the high sensitivities we report

might be amplified.

Although the highest proportionate sensitivities in-

volve temperature changes on fecundity, the role of

light competition exceeds climate sensitivities for both

growth and mortality risk. Fecundity will track climate

change for many species, but growth and survival will

continue to respond most strongly to their local compe-

titive environment. The resulting response may not bear

much resemblance to the predictions that come from

spatial climate correlations.

By sharpening inference on climate risk, our ap-

proach can more directly guide policy and planning.

Species in the genera Pinus, Ulmus, Fagus, and Magnolia

appear strongly influenced by climate variation, with

their current demographic responses being dominated

by fluctuations in at least two climate variables. As

climate continues to change, these species will respond.

Warming springs will benefit, whereas drought will

harm. By identifying the species at risk and why, future

research can focus on the physiological (as opposed to

demographic) basis for vulnerability, and how spatial

variation in resources, at both landscape and geo-

Table 3 Correlation matrix for predictors in the model

Canopy Spring temperature Summer PDSI Mean spring temperature

Cis,t Ts,t Ps,t T0s

Ts,t 0.056

Ps,t �0.0097 �0.15

T0s 0.16 0.023 �0.021

P0s �0.11 �0.0061 0.014 �0.096
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graphic scales, should be exploited to assure availability

of suitable habitat with climate change.
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Ibáñez I, Clark JS, Dietze MC et al. (2006) Predicting biodiversity change: outside the

climate envelope, beyond the species-area curve. Ecology, 87, 1896–1906.
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